In Situ Transformation of Electrospun Nanofibers into Nanofiber-Reinforced Hydrogels

Publikation: Bidrag til tidsskriftTidsskriftartikelForskningfagfællebedømt

Dokumenter

  • Fulltext

    Forlagets udgivne version, 3,02 MB, PDF-dokument

Nanofiber-reinforced hydrogels have recently gained attention in biomedical engineering. Such three-dimensional scaffolds show the mechanical strength and toughness of fibers while benefiting from the cooling and absorbing properties of hydrogels as well as a large pore size, potentially aiding cell migration. While many of such systems are prepared by complicated processes where fibers are produced separately to later be embedded in a hydrogel, we here provide proof of concept for a one-step solution. In more detail, we produced core-shell nanofibers from the natural proteins zein and gelatin by coaxial electrospinning. Upon hydration, the nanofibers were capable of directly transforming into a nanofiber-reinforced hydrogel, where the nanofibrous structure was retained by the zein core, while the gelatin-based shell turned into a hydrogel matrix. Our nanofiber-hydrogel composite showed swelling to ~800% of its original volume and water uptake of up to ~2500% in weight. The physical integrity of the nanofiber-reinforced hydrogel was found to be significantly improved in comparison to a hydrogel system without nanofibers. Additionally, tetracycline hydrochloride was incorporated into the fibers as an antimicrobial agent, and antimicrobial activity against Staphylococcus aureus and Escherichia coli was confirmed.
OriginalsprogEngelsk
Artikelnummer2437
TidsskriftNanomaterials
Vol/bind12
Udgave nummer14
ISSN1687-4110
DOI
StatusUdgivet - 2022

Antal downloads er baseret på statistik fra Google Scholar og www.ku.dk


Ingen data tilgængelig

ID: 314628481